Direction of Arrival Estimation Based on DDOA and Self-Organizing Map
نویسندگان
چکیده
منابع مشابه
The Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملEstimation of Missing Daily Precipitation and Runoff Using Self-Organizing Map (A Case Study: Mazandaran Province)
Expert aquatic designers face many problems; among these, in hydrology, defective occurrences in time-series can cause errors in the ultimate results of the study. This more often happens in the regions where the number of hydrometric and rain gauge stations is limited. In addition, assessing, developing and maintaining the use of water resources require accessible long-term and high-quality qu...
متن کاملDirection of Arrival Estimation
We have seen that there is a one-to-one relationship between the direction of a signal and the associated received steering vector. It should therefore be possible to invert the relationship and estimate the direction of a signal from the received signals. An antenna array therefore should be able to provide for direction of arrival estimation. We have also seen that there is a Fourier relation...
متن کاملDirection of Arrival Estimation
Array Signal Processing (ASP) is a relatively new technique in Digital Signal Processing (DSP) with many potential applications in communication and speech processing. Direction of arrival (DOA) can be estimated using different techniques evolved with ASP. It is observed that subspace method provides superior performance in resolving closely spaced sources.
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/231307